Relaxation Effects of Musically Guided Resonance Breathing: A Randomized Controlled Pilot Study
##plugins.pubIds.doi.readerDisplayName##:
https://doi.org/10.47513/mmd.v10i2.576摘要
Recent evidence shows that both music therapy and resonance breathing (breathing at about 0.1 Hz) may be effective in treating stress-related symptoms and promoting relaxation. However, no study has yet explored the potential of integrating the working mechanisms into a combined approach using live played music to guide respiration. Therefore, the objective of the present pilot study was to evaluate the psychophysiological effects of a combined intervention. A total of 60 healthy adults were randomized to either the experimental group or the control group (where participants listened to prerecorded relaxation music). Heart rate and heart rate variability were extracted for the following 5-minute segments: Resting baseline, stress task, intervention, resting post-intervention. Additionally, self-evaluation scores for relaxation and general well-being were assessed with visual analogue scales. Significant time × group interaction effects were found for general well-being (p = .028) and heart rate variability as measured by RMSSD (p < .001), indicative of increased parasympathetic outflow in the experimental group. In conclusion, the combination of music therapy and resonance breathing seems to be a well-received and effective way to induce relaxation and well-being in healthy adults.
参考
References
Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 2009;10:397–409. doi:10.1038/nrn2647.
Esch T, Fricchione GL, Stefano GB. The therapeutic use of the relaxation response in stress-related diseases. Med. Sci. Monit. 2003;9:34.
Dusek JA, Benson H. Mind-Body Medicine: A Model of the Comparative Clinical Impact of the Acute Stress and Relaxation Responses. Minn Med. 2009;92:47–50.
Segerstrom SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull. 2004;130:601–30. doi:10.1037/0033-2909.130.4.601.
Billman GE, Huikuri HV, Sacha J, Trimmel K. An introduction to heart rate variability: methodological considerations and clinical applications. Front Physiol. 2015;6:55. doi:10.3389/fphys.2015.00055.
Quintana DS, Heathers JAJ. Considerations in the assessment of heart rate variability in biobehavioral research. Front Psychol. 2014;5:805. doi:10.3389/fpsyg.2014.00805.
Ellis RJ, Koenig J, Thayer JF. Getting to the Heart: Autonomic Nervous System Function in the Context of Evidence-Based Music Therapy. Music and Medicine. 2012;4:90–9. doi:10.1177/1943862112437766.
Appelhans BM, Luecken LJ. Heart rate variability as an index of regulated emotional responding. Review of General Psychology. 2006;10:229–40. doi:10.1037/1089-2680.10.3.229.
Thayer JF, Hansen AL, Johnsen BH. The Non-invasive Assessment of Autonomic Influences on the Heart Using Impedance Cardiography and Heart Rate Variability. In: Steptoe A, editor. Handbook of Behavioral Medicine. New York, NY: Springer New York; 2010. p. 723–740. doi:10.1007/978-0-387-09488-5_47.
Lehrer P, Vaschillo E, Lu S-E, Eckberg D, Vaschillo B, Scardella A, Habib R. Heart rate variability biofeedback: effects of age on heart rate variability, baroreflex gain, and asthma. Chest. 2006;129:278–84. doi:10.1378/chest.129.2.278.
Britton A, Shipley M, Malik M, Hnatkova K, Hemingway H, Marmot M. Changes in heart rate and heart rate variability over time in middle-aged men and women in the general population (from the Whitehall II Cohort Study). Am. J. Cardiol. 2007;100:524–7. doi:10.1016/j.amjcard.2007.03.056.
Lehrer P, Eddie D. Dynamic processes in regulation and some implications for biofeedback and biobehavioral interventions. Appl Psychophysiol Biofeedback. 2013;38:143–55. doi:10.1007/s10484-013-9217-6.
Kemp AH, Quintana DS. The relationship between mental and physical health: insights from the study of heart rate variability. Int J Psychophysiol. 2013;89:288–96. doi:10.1016/j.ijpsycho.2013.06.018.
Lehrer PM, Woolfolk RL, Sime WE, editors. Principles and practice of stress management. 3rd ed. New York: Guilford Press; 2007.
Myrtek M, Weber D, Brügner G, Müller W. Occupational stress and strain of female students: Results of physiological, behavioral, and psychological monitoring. Biological Psychology. 1996;42:379–91. doi:10.1016/0301-0511(95)05168-6.
Prinsloo GE, Derman WE, Lambert MI, Rauch HGL. The effect of a single episode of short duration heart rate variability biofeedback on measures of anxiety and relaxation states. International Journal of Stress Management. 2013;20:391–411. doi:10.1037/a0034777.
Hjortskov N, Rissén D, Blangsted AK, Fallentin N, Lundberg U, Søgaard K. The effect of mental stress on heart rate variability and blood pressure during computer work. Eur. J. Appl. Physiol. 2004;92:84–9. doi:10.1007/s00421-004-1055-z.
Vaschillo E, Lehrer P, Rishe N, Konstantinov M. Heart Rate Variability Biofeedback as a Method for Assessing Baroreflex Function: A Preliminary Study of Resonance in the Cardiovascular System. Applied Psychophysiology and Biofeedback. 2002;27:1–27. doi:10.1023/A:1014587304314.
Vaschillo EG, Vaschillo B, Lehrer PM. Characteristics of resonance in heart rate variability stimulated by biofeedback. Appl Psychophysiol Biofeedback. 2006;31:129–42. doi:10.1007/s10484-006-9009-3.
Yasuma F, Hayano J-i. Respiratory Sinus Arrhythmia: Respiratory Sinus Arrhythmia: why does the heartbeat synchronize with respiratory rhythm? Chest. 2004;125:683. doi:10.1378/chest.125.2.683.
Lehrer PM. Biofeedback Training to Increase Heart Rate Variability. In: Lehrer PM, Woolfolk RL, Sime WE, editors. Principles and practice of stress management. 3rd ed. New York: Guilford Press; 2007. p. 227–248.
Lehrer PM, Vaschillo E, Vaschillo B, Lu S-E, Eckberg DL, Edelberg R, et al. Heart Rate Variability Biofeedback Increases Baroreflex Gain and Peak Expiratory Flow. Psychosomatic Medicine. 2003;65:796–805. doi:10.1097/01.PSY.0000089200.81962.19.
Karavidas MK. Heart Rate Variability Biofeedback for Major Depression. 2007.
Zucker TL, Samuelson KW, Muench F, Greenberg MA, Gevirtz RN. The effects of respiratory sinus arrhythmia biofeedback on heart rate variability and posttraumatic stress disorder symptoms: a pilot study. Appl Psychophysiol Biofeedback. 2009;34:135–43. doi:10.1007/s10484-009-9085-2.
Nolan RP, Kamath MV, Floras JS, Stanley J, Pang C, Picton P, Young QR. Heart rate variability biofeedback as a behavioral neurocardiac intervention to enhance vagal heart rate control. Am. Heart J. 2005;149:1137. doi:10.1016/j.ahj.2005.03.015.
Martin A, Drees L, Schmidt J. Effekte von One-Session HRV-Biofeedback auf Psychophysiologie und Depressivität: [Effects of a one-session HRV-biofeedback training on psychophysiology and depression]. Berlin; 2016.
Prinsloo GE, Rauch HGL, Lambert MI, Muench F, Noakes TD, Derman WE. The effect of short duration heart rate variability (HRV) biofeedback on cognitive performance during laboratory induced cognitive stress. Appl. Cognit. Psychol. 2011;25:792–801. doi:10.1002/acp.1750.
Trondalen G, Ole Bonde L. Music Therapy: Models and Interventions. In: MacDonald R, Kreutz G, Mitchell L, editors. Music, Health, and Wellbeing: Oxford University Press; 2012. p. 41–62. doi:10.1093/acprof:oso/9780199586974.003.0004.
Grocke DE, Wigram T. Receptive methods in music therapy: Techniques and clinical applications for music therapy clinicians, educators, and students. London, Philadelphia: Jessica Kingsley Publishers; 2007.
Pelletier CL. The Effect of Music on Decreasing Arousal Due to Stress: A Meta-Analysis. Journal of Music Therapy. 2004;41:192–214. doi:10.1093/jmt/41.3.192.
Hodges DA. Psychophysiological Measures. In: Juslin PN, Sloboda JA, editors. Handbook of music and emotion: Theory, research, applications. Oxford: Oxford University Press; 2010. p. 279–312.
Bradt J, Dileo C, Potvin N. Music for stress and anxiety reducti
on in coronary heart disease patients. Cochrane Database Syst Rev. 2013;12:CD006577. doi:10.1002/14651858.CD006577.pub3.
Bailey LM. The Effects of Live Music versus Tape-Recorded Music on Hospitalized Cancer Patients. Music Therapy. 1983;3:17–28. doi:10.1093/mt/3.1.17.
Malone AB. The Effects of Live Music on the Distress of Pediatric Patients Receiving Intravenous Starts, Venipunctures, Injections, and Heel Sticks. Journal of Music Therapy. 1996;33:19–33. doi:10.1093/jmt/33.1.19.
Arnon S, Shapsa A, Forman L, Regev R, Bauer S, Litmanovitz I, Dolfin T. Live music is beneficial to preterm infants in the neonatal intensive care unit environment. Birth. 2006;33:131–6. doi:10.1111/j.0730-7659.2006.00090.x.
Grossman P, Taylor EW. Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biol Psychol. 2007;74:263–85. doi:10.1016/j.biopsycho.2005.11.014.
Spintge R, Droh R. Musik in der Medizin / Music in Medicine: Neurophysiologische Grundlagen Klinische Applikationen Geisteswissenschaftliche Einordnung / Neurophysiological Basis Clinical Applications Aspects in the Humanities: Springer Berlin Heidelberg; 2012.
Smeets T, Cornelisse S, Quaedflieg, Conny W E M, Meyer T, Jelicic M, Merckelbach H. Introducing the Maastricht Acute Stress Test (MAST): a quick and non-invasive approach to elicit robust autonomic and glucocorticoid stress responses. Psychoneuroendocrinology. 2012;37:1998–2008. doi:10.1016/j.psyneuen.2012.04.012.
Lehrer PM, Vaschillo E, Vaschillo B. Resonant frequency biofeedback training to increase cardiac variability: rationale and manual for training. Appl Psychophysiol Biofeedback. 2000;25:177–91.
Miller EB. Bio-guided music therapy: A practitioner's guide to the clinical integration of music and biofeedback. London: Jessica Kingsley Publishers; 2011.
Task Force. Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use. Circulation. 1996;93:1043–65. doi:10.1161/01.CIR.93.5.1043.
Andreassi JL. Psychophysiology: Human behavior and physiological response. 5th ed. Mahwah, N.J.: Lawrence Erlbaum; 2007.
Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart's anatomy and heart rate variability. Front Psychol. 2014;5:1040. doi:10.3389/fpsyg.2014.01040.
Goedhart AD, van der Sluis, Sophie, Houtveen JH, Willemsen G, de Geus, Eco J C. Comparison of time and frequency domain measures of RSA in ambulatory recordings. Psychophysiology. 2007;44:203–15. doi:10.1111/j.1469-8986.2006.00490.x.
Guo Y-F, Stein PK. Circadian rhythm in the cardiovascular system: considerations in non-invasive electrophysiology. Cardiac Electrophysiology Review. 2002;6:267–72. doi:10.1023/A:1016337210738.
Sasaki K, Maruyama R. Consciously controlled breathing decreases the high-frequency component of heart rate variability by inhibiting cardiac parasympathetic nerve activity. Tohoku J. Exp. Med. 2014;233:155–63.
Lee E-J, Bhattacharya J. Heart Rate Variability During Monochord-Induced Relaxation in Female Patients With Cancer Undergoing Chemotherapy. Music and Medicine. 2013;5:177–86. doi:10.1177/1943862113496119.
Salamon E, Kim M, Beaulieu J, Stefano GB. Sound therapy induced relaxation: down regulating stress processes and pathologies. Med Sci Monit. 2003;9:RA96-RA101.
Esch T, Guarna M, Bianchi E, Zhu W, Stefano GB. Commonalities in the central nervous system's involvement with complementary medical therapies: limbic morphinergic processes. Med. Sci. Monit. 2004;10:17.
Grossman E, Grossman A, Schein MH, Zimlichman R, Gavish B. Breathing-control lowers blood pressure. J Hum Hypertens. 2001;15:263–9. doi:10.1038/sj.jhh.1001147.
Mahtani KR, Nunan D, Heneghan CJ. Device-guided breathing exercises in the control of human blood pressure: systematic review and meta-analysis. J. Hypertens. 2012;30:852–60. doi:10.1097/HJH.0b013e3283520077.