Multidisciplinary perspectives on music perception and cognition for cochlear implant users


  • Alexander Chern Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medicine
  • Iliza Butera Vanderbilt Brain Institute, Vanderbilt University



For over 30 years, cochlear implants (CIs) have been successfully providing sound and speech perception to individuals who suffer from severe-to-profound sensorineural hearing loss. Despite many recent advances in CI technology, significant challenges remain for users, including speech perception in noisy environments, identifying vocal emotion, and perhaps most notably, music perception and appreciation. Moreover, pediatric cochlear implant users often demonstrate a slower and more variable language development trajectory compared to their normal hearing peers, which is in part due to the imperfect hearing restoration by these devices. In this brief report, we discuss multidisciplinary perspectives on music perception and cognition for CI users, as well as how they can be employed to improve the cochlear implant experience. We divide these strategies into two categories—a top-down approach (e.g., employing therapeutic measures to help train the CI user’s brain to fully reap the benefits of cochlear implantation) and a bottom-up approach (e.g., improving the auditory input through developing new technology, creating individualized programming strategies, and developing music specifically tailored for CI users). These individualized, yet multidirectional approaches will help create a functionally-integrated system that supports robust processing of complex sounds, which is essential for many everyday tasks.

Author Biographies

Alexander Chern, Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medicine


Iliza Butera, Vanderbilt Brain Institute, Vanderbilt University



Niparko JK, Tobey EA, Thal DJ, et al. Spoken Language Development in Children Following Cochlear Implantation. JAMA J Am Med Assoc. 2010;303(15):1498-1506. doi:10.1001/jama.2010.451

Labadie RF, Noble JH, Hedley-William A, Sunderhaus L, Dawant B, Gifford R. Results of post-operative, CT-based, electrode deactivation on hearing in pre-lingually deafened adult cochlear implant (CI) recipients. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol. 2016;37(2):137-145. doi:10.1097/MAO.0000000000000926

Riley PE, Ruhl DS, Camacho M, Tolisano AM. Music Appreciation after Cochlear Implantation in Adult Patients: A Systematic Review. Otolaryngol Neck Surg. 2018;158(6):1002-1010. doi:10.1177/0194599818760559

Rowland J, Kasdan A, Poeppel D. There is music in repetition: Looped segments of speech and nonspeech induce the perception of music in a time-dependent manner. Psychon Bull Rev. 2019;26(2):583-590. doi:10.3758/s13423-018-1527-5

Dalbert A, Sim JH, Gerig R, Pfiffner F, Roosli C, Huber A. Correlation of Electrophysiological Properties and Hearing Preservation in Cochlear Implant Patients. Otol Neurotol. 2015;36(7):1172. doi:10.1097/MAO.0000000000000768

Koka K, Riggs WJ, Dwyer R, et al. Intra-Cochlear Electrocochleography During Cochear Implant Electrode Insertion Is Predictive of Final Scalar Location: Otol Neurotol. 2018;39(8):e654-e659. doi:10.1097/MAO.0000000000001906

O’Connell BP, Holder JT, Dwyer RT, et al. Intra- and Postoperative Electrocochleography May Be Predictive of Final Electrode Position and Postoperative Hearing Preservation. Front Neurosci. 2017;11. doi:10.3389/fnins.2017.00291

Carlson ML, Driscoll CLW, Gifford RH, et al. Implications of Minimizing Trauma During Conventional Cochlear Implantation. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol. 2011;32(6):962-968. doi:10.1097/MAO.0b013e3182204526

Adunka O, Kiefer J. Impact of electrode insertion depth on intracochlear trauma. Otolaryngol--Head Neck Surg Off J Am Acad Otolaryngol-Head Neck Surg. 2006;135(3):374-382. doi:10.1016/j.otohns.2006.05.002

Suhling M-C, Majdani O, Salcher R, et al. The Impact of Electrode Array Length on Hearing Preservation in Cochlear Implantation. Otol Neurotol. 2016;37(8):1006-1015. doi:10.1097/MAO.0000000000001110

Gantz BJ, Turner C, Gfeller KE, Lowder MW. Preservation of Hearing in Cochlear Implant Surgery: Advantages of Combined Electrical and Acoustical Speech Processing. The Laryngoscope. 2005;115(5):796-802. doi:10.1097/01.MLG.0000157695.07536.D2

Gifford RH, Davis TJ, Sunderhaus LW, et al. Combined electric and acoustic stimulation (EAS) with hearing preservation: effect of cochlear implant low-frequency cutoff on speech understanding and perceived listening difficulty. Ear Hear. 2017;38(5):539-553. doi:10.1097/AUD.0000000000000418

Golub JS, Won JH, Drennan WR, Worman TD, Rubinstein JT. Spectral and Temporal Measures in Hybrid Cochlear Implant Users: On the Mechanism of Electroacoustic Hearing Benefits. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol. 2012;33(2):147-153. doi:10.1097/MAO.0b013e318241b6d3

Jiam NT, Gilbert M, Cooke D, et al. Association Between Flat-Panel Computed Tomographic Imaging–Guided Place-Pitch Mapping and Speech and Pitch Perception in Cochlear Implant Users. JAMA Otolaryngol Neck Surg. 2019;145(2):109. doi:10.1001/jamaoto.2018.3096

Battmer R-D, Borel S, Brendel M, et al. Assessment of ‘Fitting to Outcomes Expert’ FOXTM with new cochlear implant users in a multi-centre study. Cochlear Implants Int. 2015;16(2):100-109. doi:10.1179/1754762814Y.0000000093

Looi V, Gfeller K, Driscoll V. MUSIC APPRECIATION AND TRAINING FOR COCHLEAR IMPLANT RECIPIENTS: A REVIEW. Semin Hear. 2012;33(4):307-334. doi:10.1055/s-0032-1329222

Chern A, Tillmann B, Vaughan C, Gordon RL. New evidence of a rhythmic priming effect that enhances grammaticality judgments in children. J Exp Child Psychol. 2018;173:371-379. doi:10.1016/j.jecp.2018.04.007

Przybylski L, Bedoin N, Krifi-Papoz S, et al. Rhythmic auditory stimulation influences syntactic processing in children with developmental language disorders. Neuropsychology. 2013;27(1):121-131. doi:10.1037/a0031277

Bedoin N, Besombes A-M, Escande E, Dumont A, Lalitte P, Tillmann B. Boosting syntax training with temporally regular musical primes in children with cochlear implants. Ann Phys Rehabil Med. 2018;61(6):365-371. doi:10.1016/

Sumby WH, Pollack I. Visual contribution to speech intelligibility in noise. J Acoust Soc Am. 1954;26:212-215. doi:10.1121/1.1907309





Full Length Articles